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Scattering by a Two Dimensional Groove in a Ground Plane

Kasra Barkeshli and John L. Volakis

Higher order boundary conditions involve derivatives of the fields beyond the first
and were recently shown to be more effective than traditional first order conditions in
modeling dielectric coatings and layers. In this report an application of a third order
generalized boundary condition to scattering by a filled rectangular groove is
presented. Deficiencies of such higher order boundary conditions are addressed and
a correction is proposed for the present case. As part of the process of examining and
improving the accuracy of the proposed generalized boundary conditions, an exact
solution is developed and a comparison is provided with a solution based on the

standard impedance boundary condition.



L INTRODUCTION

Traditionally, the standard impedance boundary condition (SIBC) [1] has been
employed to simulate thin material layers on perfectly conducting objects. As is well
known, however, the SIBC provides limited accuracy and is particularly applicable to
lossy and/or high contrast dielectrics. This is primarily because it cannot model the
polarization current components that are normal to the dielectric layer. As a result, the
SIBC has been found to be best suited for near normal incidence, unless the coating's
material properties are such that limit penetration within the material.

The SIBC is a first order condition in that its definition involves a single normal
derivative of the component of the field normal to the modeled surface. Recently(2],
however, a class of boundary conditions were proposed whose major characteristic is
the inclusion of higher order derivatives (along the direction of the surface normal) of
the normal field components. These were originally introduced by Karp and Karal [3]
and Wienstein [4] to simulate surface wave effects, but have been found to be rather
general in nature. In fact, they can be employed to simulate any material profile with a
suitable choice of the (constant) derivative coefficients. Appropriately, they are
referred to a generalized impedance boundary conditions (GIBC) and can be written
either in terms of tangential or normal derivatives provided a duality condition is
satisfied [2]. Unlike the SIBC they offer several degrees of freedom and allow an
accurate prediction of the surface reflected fields at oblique incidences. This was
demonstrated in [2] for the infinite planar surface formed by a uniform dielectric layer

on a ground plane. It was found that the maximum coating or layer thickness that can




be simulated accurately with a given GIBC was analogous to the highest order
derivative included in the condition.

The GIBCs offer several advantages in both asymptotic and numerical
analysis of electromagnetic problems. For example, in the case of asymptotic/high
frequency analysis, they allow an accurate replacement of a coating on a layer with a
sheet boundary condition amenable to a Wiener-Hopf analysis [5,6] or some other
function theoretic approach [7]. In numerical analysis, the profile of a coating can be
replaced by a simple boundary condition on the surface of the coating. This eliminates
a need for introducing unknown polarization currents within the coating or material
layer and thus leading to a more efficient solution.

In this report we examine a numerical application of a third order GIBC for
scattering by a material filled groove in a ground plane. Since the GIBCs were derived
for a coating without terminations, of particular interest in this study is the examination
of their accuracy near those terminations. It is, unfortunately, found that they must be
supplemented by more accurate conditions in the vicinity of material discontinuities. A
procedure is, therefore, introduced that combines the exact and GIBC formulations.
Since the exact solution is required for comparison purposes and in developing the
hybrid formulation, it is presented in the first part of the report. This is followed by a
discussion on the limitations of a formulation based on the SIBC. The integral
equation based on a third order GIBC is presented next. This is solved by the
conjugate gradient FFT method having an O(N) memory requirement. In contrast, the
exact integral equation is not amenable to such a solution and must be soived by a

matrix inversion approach having an O(N2 ) memory requirement. The hybrid



formulation is presented last and results are given which show the validity of the

procedure as well as its limitations.

l. EXACT SOLUTION

A. Formulation

Consider the H, polarized wave

i ”% (x'_zw—)cm¢o+ysn¢o]

H=2e (1)
incident on the two dimensional cavity as shown in Fig. 1 and we are interested in
computing the sattered field. The exact formulation for a slit in a ground plane has
been developed in [8] and a similar formulation can be followed in the case of the
groove. Below we develop an exact integral equation based on this procedure.

In accordance with the equivalence principle the cavity may be closed by a

perfect conductor and the equivalent magnetic current

M=ExA or M,=E,
may then be introduced on the cavity's top surface, where E, is the x component of the

total electric field at the aperture. Referring to Fig. 2 and applying continuity of the

tangential electric field across the aperture, we have



ZM =-ZM (2)

In addition, continuity of the total tangential magnetic field across the aperture gives

b +

H, +HY (M) =H (M) =H® (M) =-H M) ;y=0 (3)

in which th denotes the tangential magnetic field at the cavity's surface in region b and
likewise H,” is the tangential field aty = 0".

From (3) an integral equation can be obtained after substitution of the
appropriate field expressions. On the aperture (y=0), these are

ik(x-g)ws%

H, =2e (4)
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in which Y, = 1/Z,, is the free space admittance and k, is the free space wavenumber

and a factor of two has been introduced due to image theory.

To find an expression for th (M,) we require the cavity Green's function. To

find it we proceed as follows: Set



M=2M (6)
F=W¥3 (7)
where ¥ is the scalar wave potential satisfying the two dimensional wave equation in

the source free region

M
32 gg" *% |¥=0 inregionb excepty=0. (8)

subject to the appropriate boundary conditions. Also
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in which Y, =Y, _ / R, k, =Ko JE 1, and (., p ) are the relative constitutive

parameters of the material filling the cavity. The scalar wave potential ¥ can be

determined by recalling the boundary conditions for the tangential electric field on the

walls of the cavity. These are

- 9 -.
E,(x,0)=-M, = awa_o M, (11)
- 9 _
E, (x,-t)=0 = ay‘l'y'__t'o (12)
E ©,y)=0 5
€, w,y) =0 = a_x‘*'xl.qfo' (13)

Choosing,
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¥ (x,y) = ZApcos[kp(yﬂ)] cos BI% k)= k:[%vlt')
p=0

satisfies (12) and (13). The constants A; are then determined to satisfy (11). That is

ay ZA kpsm k (y"'t)]cos—l =-Mz
y 0 p,o
(14)
, prx
=- ZoApkpsm (kpt) cos =" M,.
p=
o . qnx . :
Multiplying both sides by cos W and integrating, we have
w
2 Ak, sin Kt jcos cos 1= dx=- J' M,(x) cos - dx (15)
p=0 0
yielding
& prx
A= mjm (x) cos £ ax (16)
in which
1 p=0
»= 2 p>0
Therefore,

M)— ]ka 2wkps|nkt J.M (x) COS( 70(de cos[k <Y+t)]cos[me(]
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B. Moment Method Solution

Substituting (4), (5) and (17) into (3) yields the integral equation

w w

KoY w2 ' . -kab Ep prx ' prx’
> jMz(x)Ho (ko | X X1) X' - ] 2 i IMZ(x)cos — dx
0 p=0
]k(x _)as¢°
=26 (18)

To discretize the above integral equation we expand the magnetuc current in terms of
pulses basis function as

A A

1 X,- 5 <X<X,+ 5

0 , else

M, () =ﬁ‘, CaM () 5 M, (¥)=

Na=1

and by substitution back into (18), we obtain
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Employing point matching, this can now be written as

[Ymn] [Cn] = [Vm] (21)
where
Xt ‘2" k Y pnx Xat+ %
Ymn = 4 J. Ho (ko |xm - X |) dx 2W : - k tan kpt) ICOS
= A
X, -% Xp- 2 (22)
and
V,=e (23)
with x_= ma m=1, 2, 3,... The elements of the square admittance matrix can be

m=2

further simplified to

Yo=Y +Y2 (24)
with
[k_"}_".A[1 12( k°4A forn=m
y ! ;< (25a)
L k°4Y° A H;Z) (Kg X = Xq 1) forn=m
and
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in which y=0.5772 is the Euler constant.

C. TE Scattering from a Narrow Groove
In this section we examine the exact formulation and compare it to that
obtained via application of the standard impedance boundary condition for a narrow

groove. By rewriting the integral equation (18) as

oyo J‘M (X)H (kOIX x'|)dx' + mn—kbt‘ JM (x') dx'

kY M X' jk(x- ) 0os 0,
- %’ 2 ta2n - S p;x J. M, (x') cos p% dx=2e 2 (26)
p=1 kp kp 0
and setting 1, = jZ, tan (kyt) we obtain
w w : w
kY jk(x-—) as ¢,
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0
where we have included only the dominant mode (p=0) in the representation of the

cavitiy's Green's function. If we further assume a constant tangential electric field

variation (M, (x) ~ constant) over the aperture, (27) reduces to

] jk(x- ¥)cos e,

w

KoY. w2 HY At 2
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0
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which is the integral equation resulting from an application of the standard impedance
boundary condition (SIBC).
The approximations required to go from (26) to (28) are not obviously

expected to hold unless the groove is small in depth and width, say k,w < 0.6 and
kot <0.6. Consequently one does not expect the SIBC to provide a good simulation of

the cavity scattering, particularly near grazing incidences where M, (x) in not symmetric
and may have rapid spatial variation. In fact, it may also be observed that the SIBC
integral equation , at best, yields the average of the actual equivalent current
-distribution on the surface of the crack. This is clearly illustrated in Fig. 3 where the
currents and echowidth predicted via (28) and the exact integral equation (20) are
compared. The result shown in Fig. 3 is a typical situation and it is not surprising that
the backscatter echowidth predicted by the SIBC formulation is in substantial error at

oblique incidences.

ll. FORMULATION WITH GENERALIZED IMPEDANCE BOUNDARY

CONDITIONS

It is desirable to work with a formulation (or an integral equation) that is
amenable to a conjugate gradient FFT (CGFFT) implementation. The CGFFT has an
O(N)L'memory requirement and can thus be suitable for treating large size grooves or
cavities, particularly when applied to three dimensional geometries. Unfortunately, the

exact formulation, in addition to being restricted to rectangular grooves and cracks, is

10




not suitable for a CGFFT implementation. On the other hand the integral equation (20)
resulting from an application of the SIBC, a first order condition, although amenable to
a CGFFT is not of acceptable accuracy. Recently, however, higher order impedance
boundary conditions involving field derivatives beyond the first have been found to
provide a substantially better simulation for fairly thick dielectric coatings. These are

referred to as generalized impedance boundary conditions (GIBCs) and take the form

am
s B (302)

2 (kg "

m
a. dH
g m_ Y .9 (30b)
r d
m=0 (lko) y

where a,, and a', are constants specific to the surface, layer or coating being
modeled. For M=1, they reduce to the SIBC provided we set

a. a'

iz =i =2=—1 31
Zb-nb o =] eb tan (kbt)_a1 -av ( )
' 0

where N = /ub g, - A third order GIBC corresponds to M=3. In that case, an accurate

simulation of the reflection coefficient for a metal-backed uniform dielectric layer can

be obtained by choosing

11



2y= (N~ o) [tan (ktN) - tan (—2‘1‘,\7]

a, = i%[1 +tan (ktN) tan (%)]

(32)
1 1 +tan (ktN) tan (2
a, = o tan (kiN) - tan( )+kt(N-—-—) * 2N
ikte
a, =- I2tN [tan (ktN) - tan (2k:\l]
and
- (2N?- 1)[1 + cos (ktN) cot (-z—klﬁ]
o, = 1 2N, | oot (N - cot (R0
(33)

= 1 + cot (ktN) cot ( SN+ KN - —) {cm (kN) - cot (2krt\1 )]

v Kt
al, =i kmb[1 + cot (ktN) cot(2N }

The above conditions are applied on the surface of the coating and predict the proper
surface wave modes. However, they were derived for an infinite layer without the
presence of any terminations. Therefore, when applied to the case of a groove having
abrupt material terminations at x=0 and x=w, we expect that the simulation provided by
(30) in conjunction with (32) and (33) will not be as accurate. As a result, the GIBC
must be supplemented by additional (more accurate) conditions at the terminations of

the coating or in this case the groove. At this point, no standard methodology has

12



been devised for imposing these supplementary conditions, but in either case such
conditions will be specific to the geometrical and material properties of the termination.
Before, however, we examine the issue of supplementary conditions, let us first
proceed with a direct implementation of the third order GIBC noted above. It will be
seen that comparison of the resuits obtained via a direct application of this GIBC will
guide us on how these can be supplemented at the terminations.

For H, polarization, Hy =0, and thus the relevant GIBC is (30a). Expanding this

we have

a 2 a a 2
2 0 2 %1.,% 97 |9E
[ao“‘—z‘]Ey+ k73 )—ayy =0; y=0" (34)

V-E=0 (35)
and thus
oE oE oM
y - X _ z
dy =~ ox = ox (36)

Substituting (36) into (34) now yields

3+ =5 Ko * 32 J'zmz(x')a—xHo K|x-x|)dx' +
0 0
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In deriving (37) we also employed the wave equation

2 2
IE, JE,
N a5 (38)

and have set

E,=E, +E, +E; =-22,c0s g, H, +E’ (39)

where

Eys=-i—J2Mz () Ho (ko | X- X]) dX (40)
0

is the y component of the scattered field in which the factor of 2 is due to image theory.

Integrating both sides of (37) with respect to x eliminates one of the

derivatives. Doing so, we obtain

2 2 . w
1 9 a 1 4 ik(x- ) cos ¢
1 3l +— — 211+ — — 2 °
+ + = 2 M,(X)=21+—=—= 2 2 e
0 Ky ox oM, a, kg ox

(41)
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and we note that for a, = a5 = 0 (41) reduces to the SIBC integral equation (28)

provided the identification noted in (31) is also employed.

The integral equation (41) derived by imposing the GIBC lends itself to a

solution via the CGFFT method. Defining the fourier transform pair

ky=F{GM} - J' G e ™ dx

GX) = f'1{é(kx>}=fé 00 6% dic

we have
2 ~ 21 2j
f {Ho (ko le)}=ng’ (ko Ix)) = =
2 2 2
Ky - Ky kg fy - 1

-1 = j) and by recalling the convolution theorem

M, (k)

J'Mz(x') H, (k| X-X]) dX = 2j
o\ fr

-1

since M, (x) is zero outside 0 < x < w. Also, in the transform domain

3 Ky

Jd .. 1 x 2

9 B S - BN SR

x ke 3 92 =277 ="k
ky 9 Ko

and (41) may thus be written as

15
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ik(x-g)oos%

f 2 M, k) =228 (46)

A CGFFT implementation of (46) is a straightforward task and typical results as
computed by (46) are shown in fig. 4. As expected, the third order GIBC applied to the
groove, predicts reasonably well the exact magnitude and phase of the current
distribution when away from the termination of the groove. The accuracy of this
prediction, of course, depends on the depth of the groove, t, and the material
properties of the dielectric filling. Our preliminary investigation indicates that for
lossless dielectrics, the above third order GIBC provides a reasonable prediction of the
current distribution away from the groove terminations for kt < 1. However, for lossy
dielectrics substantially deeper grooves can be simulated.

Next, we consider a hybrid GIBC-exact formulation to alleviate the difficulties

of the GIBC in predicting the currents near the groove terminations.

IV. HYBRID GIBC-EXACT FORMULATION
The GIBC formulation in conjunction with the CGFFT solution method offers

the substantial advantage of having an O(N) menory requirement. However, as seen

in Fig. 4, the current distribution predicted by the third order GIBC is not of acceptable

16




accuracy when within 0.2 wavelengths of the groove terminations or so. To alleviate
this difficulty, one approach is to feed the currents predicted by the GIBC integral
equation (41) away from the edges into the exact integral equation (20). The last can
then be solved for the remaining currents in the vicinity of the groove terminations.
This only requires the inversion of a small matrix thus alleviating the usual difficulties

with storage.

Suppose now that MzG (x) denotes the current computed via the GIBC integral

equation given in (41) and likewise M:(x) denotes the current computed via the exact

integral equation. Employing MzG (x) in place of M, (x) in (20) for x, < x < W - X, yields

X

A w
% J' M2 (<) HY (k, Ix - X]) dx + j M2 (<) HY (k, Ix - xT) dx
0

W-XA

[ y |

k Y £ prx’ o prX
b b P PTX IM° x') cos —— dx' + IM x') cos —— dx'
j Zktan(kpt)cosw{o £ ) cos S+ [MY () cos J}

A

p=o p

W-XA

k.Y G @
-—°é—°—jMz (X)Hy (kg | X=X ) dx’
X

ik(x-g)eesep0
=26

A

w-X
'

ik, Yy 2 € pTX J-A G prx
+ cos M, (x') cos ——dx'. (47)
W Ggtan(ey oW LT w

A
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Assuming that M, (x) has already been determined via a CGFFT solution of (46), the

entire right hand side of (47) is known. Thus forx, <0.25 a 4x4 ora 6x6 square

impedance matrix is required for the solution of M: (x). In general, continuity of the

, _ » _ G
current density must also be imposed at the transition regions between M, (x) and M: (x).

The results shown in figure 5 clearly show that the proposed hybrid

formulation can provide an accurate prediction of the scattering by a groove. The

bistatic and backscatter echowidths presented in the course of the above

developments have been summarized in Fig. 6. Other examples for the current

distributions and corresponding echowidths are given in figures 7 - 11. In these

figures the following labeling has been employed

EXACT:

SIBC:

GIBC-3:

Hybrid-1:

Hybrid-3:

Data from a numerical implementation of the exact integral
equation (20).

Data from a CGFFT implementation of (46) withag=as =0 and in
conjunction with (31)

condition.

Data from a CGFFT implementation of the integral equation (46)
resulting from the third order generalized impedance boundary
condition.

Data from the hybrid SIBC-exact formulation.

Data from the hybrid GIBC-exact formulation employing the 3rd

order GIBC.
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V. CONCLUDING REMARKS

An application of a third order generalized boundary condition (GIBC) to
scattering by a two dimensional dielectrically filled cavity was considered. In the
process of examining the accuracy of the GIBC, an exact solution was developed and
a solution based on the standard impedance boundary condition (SIBC) was

examined. An analytical comparison of the integral equation based on the SIBC with
the exact, revealed the well known limitations of the SIBC formulation. It was
concluded that the SIBC integral equation will, at most, generate an average of the
actual current distribution provided the groove is very shallow.

The GIBC integral equation was found easier to implement. Furthermore,
unlike the exact integral equation, it was amenable to a conjugate gradient FFT
solution and is, thus, attractive for three dimensional implementations. It was found to
predict the correct current behavior reasonably well away from the terminations of the
groove particularly for lossy dielectric filings. However, the inadequacy of the GIBC
formulation near the groove terminations proved problematic. The GIBC conditions
needed supplementation in these regions and several approaches were examined to
correct their deficiency. Our initial hope was that the addition of filamentary currents at
the edges would provide the required correction as was already done in the case of an
isolated thin dielectric layer. This approach, however, was not found suitable for the
subject geometry. Instead, the incorrect currents near the groove terminations were
replaced with those computed via the exact integral equations. Specifically, the

currents computed via the GIBC formulation away from the groove termination were

19
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employed in the exact integral equation to generate a small 4x4 or a 6x6 matrix for the
currents in the vicinity of the terminations. This was referred to as a hybrid exact-GIBC
approach and was found to provide a reasonably good simulation of lossy dielectric
fillings at all angles of incidence and observation. In case of lossless and low contrast

dielectrics, the simulation was adequate for groove depths up to 3/20 of a wavelength.
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Fig. 1. Geometry of the rectangular groove in a ground plane
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